Fe-Sb-Ti (Iron-Antimony-Titanium)

V. Raghavan

An isothermal section for this system was determined recently by Melnyk et al. [2003Mel], which depicts four ternary compounds.

Binary Systems

The Fe-Sb phase diagram [1993Oka] has two intermediate phases. The ε phase with the NiAs type hexagonal structure, has a homogeneity range of 40-47 at.% Sb. FeSb₂ is a line compound with orthorhombic symmetry. The Fe-Ti system has two intermediate phases: Fe₂Ti (*C*14, hexagonal) and FeTi (*B*2, cubic). [1998Dum] presented a comparison of the recent Fe-Ti assessments. A schematic and partial phase diagram of the Sb-Ti system is given in [Massalski2], which depicts seven intermediate compounds: Ti₄Sb, Ti₃Sb, Ti_{2.5}Sb, Ti₅Sb₃, Ti₆Sb₅, TiSb and TiSb₂. Among these, only the following four were found by [2003Mel]: Ti₃Sb, Ti₅Sb₃, TiSb, and TiSb₂. The crystallogaphic data on the intermediate phases of these binary systems are summarized by [2003Mel].

Ternary Compounds

Four ternary compounds are known in this system [1998Sko, 2000Mel, 2003Mel]. The crystallographic data

on these phases are summarized in Table 1 from the results of [2003Mel]. TiFe_{1-x}Sb (τ_1) (0.64 $\leq x \leq$ 0.70) has the Co₂Si (TiNiSi) type of orthorhombic structure. Ti_{1.18}Fe_{0.57}Sb (τ_2) has the Ni₂In type hexagonal structure. Ti_{1+x}FeSb (τ_3) (-0.20 $\leq x \leq$ 0.25) has the AlLiSi type of face centered cubic structure. Ti₅Fe_xSb_{3-x} (τ_4) (0.45 $\leq x \leq$ 1.0) has the W₅Si₃ type tetragonal structure.

Table 1 also lists the structural data for the ternary solid solutions based on the binary compounds of Ti_3Sb and Fe_2Ti .

Ternary Isothermal Section

With starting metals of purity $\geq 99.9\%$, [2003Mel] melted 138 alloys in an arc furnace under Ar atm. The alloys were annealed for 350 h at 797 °C for compositions in the Fe-FeSb-TiSb₂-Ti region and at 597 °C for compositions in the FeSb-Sb-TiSb₂ region. The samples were quenched in water after the anneal. The phase equilibria were studied by x-ray powder diffraction. The isothermal section redrawn in Fig. 1 corresponds to 597 °C for the Sb-rich region and 797 °C for the lower region. The four ternary compounds τ_1 , τ_2 , τ_3 , and τ_4 are present at 797 °C. The binary compound Fe₂Ti

Fig. 1 Fe-Sb-Ti isothermal sections at 797 °C (lower part) and 597 °C (upper part) [2003Mel]

Phase	Composition at:%	Pearson Symbol	Space Group	Structurbericht Designation	Prototype	Lattice parameter, nm
TiFe _{1-x} Sb	42.4–43.5 Ti	oP12	Pnma	C23	Co ₂ Si	a = 0.64272 to 0.63758
(τ_1)	42.4-43.5 Sb					b = 0.40501 - 0.40258
						c = 0.70918 - 0.70209
Ti _{1.18} Fe _{0.57} Sb	42.9 Ti	hP6	P63/mmc	$B8_2$	Ni ₂ In	a = 0.41653
(τ_2)	36.4 Sb					c = 0.62594
Ti _{1+x} FeSb	28.6–38.5 Ti	cF12	F43m		AILiSi	a = 0.59429 to 0.60182
(τ ₃)	35.7-30.8 Sb					
$Ti_5Fe_xSb_{1-x}$	62.5 Ti	<i>tI</i> 32	I4/mcm	$D8_m$	W ₅ Si ₃	a = 1.04638 to 1.04423
(τ_4)	31.9-25.0 Sb					c = 0.52836 to 0.52131
$(\mathrm{Ti}_{1-x}\mathrm{Fe}_x)_5\mathrm{Sb}$	75–73.6 Ti	cP8	Pm3n	A15	Cr ₃ Si	a = 0.52183 to 0.52028
	25 Sb				2	
$(\operatorname{Fe}_{1-x}\operatorname{Sb}_x)_{2+y}\operatorname{Ti}$		hP12	P63/mmc	<i>C</i> 14	MgZn ₂	a = 0.48213 (a)
						c = 0.78432 (a)
(a) at 30Ti-10Sb						

Table 1 Fe-Sb-Ti Crystal Structure and Lattice Parameter Data

dissolves up to 10 at.% Sb. Ti_3Sb dissolves up to 1.4 at.% Fe at constant Sb content. Other binary phases show insignificant solubility for the third component. Both polymorphic forms of Ti, (β Ti) (bcc) and (α Ti) (cph), are stable at 797 °C and are shown in Fig. 1.

References

- **1993Oka:** H. Okamoto: "Fe-Sb (Iron-Antimony)" in *Phase Diagrams of Ternary Iron Alloys*, H. Okamoto, ed., ASM International, Materials Park, OH, 1993, pp. 366-70.
- 1998Dum: L.F.S. Dumitrescu, M. Hillert, and N. Saunders: "Com-

parison of Fe-Ti Assessments," J. Phase Equilibria, 1998, 19(5), pp. 441-48.

- **1998Sko:** R.V. Skolozdra, G.A. Melnyk, and L.G. Akselrud: "Crystal Structure of Ti_{1.27}FeSb, Ti_{1.18}Fe_{0.57}Sb and TiFe_{0.3}Sb Compounds" *Kristallografia*, 1998, *43*(3), pp. 418-20 (in Russian); TR: *Crystallogr. Rep.*, 1998, *43*(3), pp. 380-82.
- **2000Mel:** G. Melnyk, E. Bauer, P. Rogl, R. Skolozdra, and E. Seidl: "Thermoelectric Properties of Ternary Transition Metal Antimonides," *J. Alloys Compd.*, 2000, 296, pp. 235-42.
- 2003Mel: G. Melnyk and W. Tremel: "The Titanium-Iron-Antimony Ternary System and the Crystal and Electronic Structure of the Interstitial Compound Ti₅FeSb₂," J. Alloys Compd., 2003, 349, pp. 164-71.